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Abstract

It is a well-known fact that linear dynamic behavior of structures can be studied by modeling the relation between force(s)

[input(s)], acting on a structure, and their resulting structural vibration response(s) [output(s)]. For industrial structures, in

their real in-operation conditions, it often becomes hard (or impossible) to experimentally measure the excitation. For this

reason system identification techniques have been developed that work on a basis of response data only. However, current

output only techniques have serious limitations when applied to some practical cases. One limiting constraint of the current

OMA techniques is that the non-measured excitations to the system in operation must be white-noise sequences. In practice

however, structural vibrations observed in operation cannot always be considered as pure white-noise excitation. Current

techniques may encounter difficulties to correctly identify the modal parameters. In this paper a new OMA approach to

identify modal parameters from output-only transmissibility measurements is introduced. This method does not make any

assumption about the nature of the excitations to the system. In general, the poles that are identified from transmissibility

measurements do not correspond with the system’s poles. However, by combining transmissibility measurements under

different loading conditions, it is shown in this paper that modal parameters can be identified. In this contribution a

numerical experiment on a cantilever beam was conducted. A comparison was made between the results of a classic

input–output and the new output-only modal analysis based on transmissibility measurements.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

During the last two decades, research has developed a growing interest for the domain of modal analysis.
Experimental modal testing has become a commonly used technique for studying the behavior of mechanical
and civil structures such as cars, aircraft and bridges, offshore platforms and industrial machinery. During a
classic modal test, both the artificially applied forces and resulting structural vibration responses are
measured. On the basis of this data, a modal model of the structure, that essentially contains the same
information as the original vibration data, is derived by means of system identification [1–3]. The
appropriateness of the parametric model for physical interpretation makes scientists and engineers most often
prefer this type of model for their structural dynamics research. Obtaining a modal model of the structure is
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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often not the final goal, but only a means to get valuable information for use with other applications.
Examples of such applications are given by: design/redesign of prototypes; finite element model updating;
damage detection and structural health monitoring. A detailed overview of classic modal analysis theory can
be found in Refs. [4–6]. Starting from 1996, the identification of output-only vibration data from mechanical
structures received a considerable amount of attention. Adapting model-based system identification
techniques [e.g. maximum likelihood (ML) estimator, least-squares complex exponential (LSCE) estimator,
sub-space-based techniques] for use with output only data, has created the possibility to identify the modal
models from in-operation mechanical structures excited by ambient noise and vibration [1,8–10]. The
modeling of the dynamic behavior of structures from output-only vibration data, has become a valid
alternative for structures where a classic forced-vibration test would be difficult, if not impossible, to conduct.
The use of in-operations modal analysis is particularly interesting because the structure remains in its normal
in-operating condition during the test. This can be considered an important advantage, since the conditions
during a laboratory forced-vibration test are often significantly different from the real in operation working
conditions. However, current output only techniques have serious limitations when applied to some practical
cases. One limiting constraint of the current OMA techniques is that the non-measured excitations to the
system in operation must be white-noise sequences. In practice however, structural vibrations observed in
operation cannot always be considered as pure white-noise excitation. In many mechanical structures the
loading forces are often more complex and even harmonic components can be present in the response. This is
especially true, when measuring on mechanical structures containing rotating parts (e.g. cars, turbines,
windmills), but also civil engineering structures may have responses superimposed by harmonic components.
OMA procedures are, strictly speaking, not applicable in these situations. Current techniques may encounter
difficulties to correctly identify the modal parameters [11]. The non-random force contributions are sometimes
wrongly identified as physical modes. The art is then to distinguish real structural behavior from noise and
excitation contributions. In order to separate the true structural modes from the forced excitation
components, a number of techniques can be used. For separating, e.g., harmonic components, special
numerical filters can be applied to filter-out those components or indicators to identify them can be used [12].
Unfortunately, in practice many of those procedures fail if the harmonic frequencies are close to the
eigenfrequencies of the structure or when the strength of the signal arising from harmonic excitations is very
high compared to the response associated with the eigenfrequencies of the structure excited through the noise
input. In most practical cases filtering pollutes the measured response and significantly changes the poles of the
structural modes so that the identified modal parameters are perturbed. In Ref. [13] the authors define an
indicator to easily identify harmonics from the signal when the frequency domain decomposition is applied. In
a next step, before estimating the single-degree of-freedom (sdof) function, they remove the peaks caused by
these harmonics by using a linear interpolation. This approach estimates, in general, the natural frequencies
and damping ratios with a good accuracy. However, when the harmonic component is close to the natural
frequency, larger deviations occur. Especially in lightly damped structures the obtained damping ratio is
higher as the calculated sdof function gets more ‘flat’ due to this linear interpolation. The authors propose a
polynomial fit to improve the current results. Other techniques start from the assumption that those harmonic
force contributions can always be considered as non-damped modes in addition to the natural modes of the
structure. In Refs. [14,15], modified modal analysis methods where the harmonic excitation components are
explicitly taken into account during the identification are proposed. These methods allow modal parameters to
be computed accurately even if the harmonic frequencies are close to the eigenfrequencies, but assume that the
harmonic frequencies are known a priori.

In this paper a new OMA technique based on transmissibility measurements will be applied. This method
does not make any assumption about the nature of forces and reduces the risk of wrongly identifying the
modal parameters due to the presence of non-white-noise sequences. In this contribution, both input–output
and output-only numerical vibration experiments were conducted on a cantilever beam in order to study the
applicability of the output-only identification technique using transmissibility measurements. In the next
section different parametric models in the frequency domain to describe the dynamical behavior of vibrating
structures are introduced. Next, the deterministic approach for the experimental modal analysis case and a
stochastic approach for the operational modal analysis case are discussed, to introduce the new stochastic
approach based on transmissibility measurements in Section 3.
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2. Parametric models

2.1. The modal model

Newton’s equations of motion for a finite-dimensional linear structure are a set of Nm second-order
differential equations, where Nm is the number of independent degrees-of-freedom (dofs), given by

M €xðtÞ þ C1 _xðtÞ þ KxðtÞ ¼ f ðtÞ, (1)

with M, C and K 2 RNm�Nm , respectively the mass, damping and stiffness matrices, f ðtÞ 2 RNm�1 the applied
force and xðtÞ 2 RNm�1 the structure’s displacement response. Using the Laplace transform and neglecting the
initial conditions results in the frequency-domain equivalent given by

ZðsÞXðsÞ ¼ FðsÞ, (2)

with the dynamical stiffness ZðsÞ ¼Ms2 þ C1sþ K. Inverting Eq. (2) yields

XðsÞ ¼ HðsÞFðsÞ, (3)

with HðsÞ ¼ ðZðsÞÞ�1 the transfer function matrix. The transfer function matrix can be formulated in its modal
form [4,5]

HðsÞ ¼ /½sINm
� K��1LT þ /n

½sINm
� Kn
��1Ln, (4)

with the diagonal matrix K given by

K ¼ diagðfl1; l2; . . . ; lNm
gÞ (5)

and Nm the number of modes. The modal parameters lr, f½:;r� and L½:;r� are, respectively, the pole, mode shape
and modal participation factor of mode r. The mathematical operators transpose, complex conjugate and
hermitian conjugate are, respectively, denoted as ½:�T, ½:�n and ½:�H . The poles lr ¼ sr þ jor contain the
natural frequencies f r ¼ or=ð2pÞ and the damping ratios dr ¼ �sr=ðs2r þ o2

r Þ. The complex operator is
denoted as j.

From an engineering point of view the modal model of a structure provides the best physical understanding.
It describes the vibration behavior of a structure with a limited number of parameters. However, since this
model is highly nonlinear in its parameters most identification algorithms do not directly identify the modal
parameters. Most modal parameters estimation methods identify first a rational polynomial matrix-fraction
modal. This modal model can be related to the physical parameters of the modal model in a second step. The
common-denominator model, or scalar matrix-fraction description, is such a model and is discussed in the
next section.

2.2. Common-denominator model

The common denominator, also called scalar matrix-fraction model, considers the relation between output o

and input i as a rational fraction of two polynomials, of which the denominator polynomial is common for all
input–output relations [7]. The transfer function matrix HðsÞ can be expressed as

HðsÞ ¼
ZadjðsÞ

jZðsÞj
, (6)

with ZadjðsÞ the adjoint matrix, containing polynomials of order 2ðNm � 1Þ. The common-denominator is then
given by the characteristic equation jZðsÞj, a polynomial in s of order 2Nm, whose roots are the poles of the
structure. In general the common-denominator model can be expressed as

HðsÞ ¼

B11ðsÞ . . . B1Ni
ðsÞ

..

. . .
. ..

.

BNo1ðsÞ . . . BNoNi
ðsÞ

2
664

3
775

AðsÞ
, (7)



ARTICLE IN PRESS
C. Devriendt, P. Guillaume / Journal of Sound and Vibration 314 (2008) 343–356346
The relation between the modal model and the common-denominator model is obtained by considering the
frequency response function (FRF) between output o and input i

HoiðsÞ ¼
BoiðsÞ

AðsÞ

¼
XNm

r¼1

forLir

s� lr

þ
fn

orL
n
ir

s� lnr

� �
(8)

From this equality it is clear that the structure poles are given by the roots of the denominator AðsÞ, while the
mode shapes and participation factors are obtained from a singular value decomposition of the residue matrix
Ar 2 CNo�Ni of mode r.

Ar ¼ /rL
T
r , (9)

with the elements of the residue matrix Ar given by

aoi;r ¼ lim
s!lr

ðs� lrÞ
BoiðsÞ

AðsÞ

¼ forLir (10)

and fr ¼ ½f1rf2r . . .fNor�
T; Lr ¼ ½L1rL2r . . .LNor�

T.

3. Primary identification data

In the previous paragraph the modal model and the common-denominator model and their relation was
introduced. In this section attention will be paid to the primary data from which one usually starts to identify a
mathematical model. A distinction is made between the availability of input–output measurements or only
output measurements. Finally, the new approach of operational modal analysis using transmissibility
measurements as primary data is introduced as a generalization of the applicability of current output-only
methods.

3.1. Input– Output measurements: a deterministic approach

Linear time-invariant systems can be modeled by starting from input–output measurements. The identified
parametric model essentially contains the same information of the studied system as the original non-
parametric data, but is often preferred because of its compact form and possible physical interpretation.
Several important references on the subject of system identification include Refs. [2,1] for time-domain
identification and [3] for frequency-domain identification.

The application of system identification techniques to the identification of modal models–natural
frequencies, damping ratios, mode shapes and modal participation factors–starting from input–output
measurements is known as experimental modal analysis (EMA). Many textbooks give an extensive overview of
EMA and input-output modal parameter estimation method [4–6]. As mentioned in the introduction, these
experimentally determined modal models can be used in a wide range of structural dynamics applications.

EMA starts from identifying modal models from the measured applied forces and vibration responses of the
structure, when artificially excited in one or more locations (illustrated by Fig. 1). These experiments are
performed under laboratory conditions to obtain high-quality measurements. From these input–output
measurements a mathematical model is identified, which is converted to a modal model of the structure.

3.1.1. FRF-based experimental modal analysis

In the field of system identification, most identification algorithms start from the measured input and output
time histories, or in the case of frequency-domain identification algorithms, from the input and output spectra.
In the case of a typical modal analysis experiment, a large amount of data is available and some preprocessing
of the data is recommended to reduce both the size of the data set and the noise levels before starting the
parametric identification of the model parameters.
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Therefore, in EMA applications it is common to reduce the amount of data and the noise levels by using the
frequency response functions (FRFs) as primary data instead of the input and output spectra. These FRFs are
estimated in a non-parametric preprocessing step. The measured forces and vibration responses are divided
into different data blocks in order to average and estimate the FRFs. In the case that only limited data is
available and averaging reduces the frequency resolution below a critical value, it is advised to start the
identification from the raw input spectra and output spectra (I/O based).

From the estimates of the transfer function matrix, i.e. the FRFs, the discussed mathematical model
discussed above can be identified.

3.2. Output-only measurements: a stochastic approach

In some applications (e.g. civil engineering [16], in-flight testing [17,18]) one is more interested in obtaining
modal models from structures during their operational conditions to model the interaction between the
structure and its environment e.g. wind, traffic, boundary conditions, turbulence. Another advantage of an in-
operation modal analysis is that nonlinear effects are linearized around the operational working point. For
these applications the structures are naturally excited by ambient excitation forces, e.g. wind, traffic, seismic
activity (micro-earthquakes), etc. [19,20] which are difficult or even impossible to measure. Elimination of this
ambient excitation is often impossible and applying an artificial measurable force which exceeds the natural
excitation is expensive and difficult. In these cases, one only measures vibration responses (illustrated by
Figure 2).

From this output-only data one can again estimate the natural frequencies, damping values and mode
shapes. The knowledge of the input signal is replaced by the assumption that the response is a realization of a
stochastic process with unknown white noise as an input. Identifying system parameters from these responses
only is referred to as stochastic system identification [1,21]. More specific to the identification of vibrating
structures the terms output-only modal analysis and in-operation or operational modal analysis (OMA) are
commonly used.

3.2.1. Auto/cross-power-density driven stochastic identification

In the field of stochastic system identification one can generally divide the identification techniques into two
basic subcategories, i.e.
�
 Data-driven stochastic identification algorithms which directly start the identification from the output time
sequences or output spectra.

�
 Correlation or auto- and cross-spectral-density driven stochastic identification algorithms which estimate in a

first step the covariance or auto- and cross-spectral densities between the outputs and certain reference
sensors.
Structure

Fig. 1. Deterministic input–output model.

Structure

Fig. 2. Stochastic output-only model.
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Auto/cross-power-density driven stochastic identification algorithms can be considered as the stochastic
counterpart of the FRF-driven deterministic algorithms, since similarly to FRF-driven identification, spectral
functions are used as primary data. In fact power-density-based identification methods first estimate power
densities between the responses and certain reference responses. In the next step a parametric model is fitted to
these functions.

In this paragraph the modal decomposition of power densities and correlations is briefly discussed
and references for a more profound discussion are given. It will be shown that under the assumption
that the forces are white-noise sequences, the power densities have a modal decomposition that is similar
to FRFs.

In Ref. [2] it is shown that for stationary stochastic processes the auto- and cross-spectral densities, also
known as power spectra, of the outputs SyyðsÞ 2 CNo�No are given by

SyyðsÞ ¼ HðsÞSff ðsÞHðsÞ
H (11)

where Sff ðsÞ 2 CNi�Ni contains the cross-power spectra of the (unknown) input forces. Under the assum-
ption that the forces are white-noise sequences Sff ðsÞ can be considered to be a constant matrix with
respect to the frequencies. Consequently, it is shown in Refs. [22,23] that by substituting Eq. (4),
in Eq. (11), power densities of the outputs SyyðsÞ evaluated at frequency o can be modally decomposed as
follows:

SyyðsÞ ¼
XNm

r¼1

frK
T
r

s� lr

þ
fn

rK
H
r

s� lnr
þ

frK
T
r

�s� lr

þ
fn

rK
H
r

�s� lnr

� �
, (12)

where w½:;r� and K½:;r� are, respectively, the mode shape and operational reference vector for mode r. This
reference vector is a function of the modal parameters and the cross-power spectrum matrix of the unknown
random input force(s). Unfortunately, the modal participation factors and by consequence the modal scale
factors cannot be determined from a single OMA test.

The problem mentioned above rises when the (unknown) input forces are no longer white-noise sequences,
as often is in practice. The latter introduces some additional terms Hexc into the modal decomposition of the
power densities that are dependent on the coloring of the unknown input forces [23].

SyyðsÞ ¼
XNm

r¼1

frK
T
r

s� lr

þ
fn

rK
H
r

s� lnr
þ

frK
T
r

�s� lr

þ
fn

rK
H
r

�s� lnr

� �
þ ½HexcðsÞ�. (13)

For this reason, additional peaks appear in the power spectra of the responses that are not related to
resonance of the system with the already mentioned difficulties. An overview of possible techniques—for the
discrimination of true physical modes from peaks related to the excitation—is given in Ref. [24]

3.2.2. Transmissibilities-driven stochastic identification

In this contribution attention will be paid to the use of transmissibilities as primary data to derive modal
parameters [25]. Contrary to the classical output-only approach of the previous section, no assumption about
the nature of forces will be required. Transmissibilities are obtained by taking the ratio of two response
spectra, i.e. TijðsÞ ¼ X iðsÞ=X jðsÞ. These transmissibility functions can, in a similar way as FRFs, be estimated
in a non-parametric preprocessing step. The measured vibration responses are divided into different data
blocks in order to average and estimate the transmissibility functions.

In general, it is not possible to identify modal parameters from transmissibility measurements. By assuming
a single force that is located in, say, the input dof k, the transmissibility reduces to

TijðsÞ ¼
X iðsÞ

X jðsÞ
¼

HikðsÞF kðsÞ

HjkðsÞF kðsÞ
¼

BikðsÞ

BjkðsÞ
9Tk

ijðsÞ, (14)

with BikðsÞ and BjkðsÞ the numerator polynomials occurring in the common-denominator models Hik ¼

BikðsÞ=AðsÞ and Hjk ¼ BjkðsÞ=AðsÞ. Note that the common-denominator polynomial, AðsÞ, whose roots are the
system’s poles, lm, disappears by taking the ratio of the two response spectra. Consequently, the poles of the
transmissibility function (14) equal the zeroes of transfer function HjkðsÞ, i.e. the roots of the numerator
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polynomial BjkðsÞ. So, in general, the peaks in the magnitude of a transmissibility function do not at all
coincide with the resonances of the system.

Note that transmissibilities as defined in Eq. (14) depend on the location of the input dof k of the unknown
force. The fact that transmissibilities vary with the location of the input forces will implicity be used to find the
system’s poles.

By making use of the modal model between input dof, k, and, say, output dof, i,

HikðsÞ ¼
XNm

m¼1

fimLkm

s� lm

þ
fn

imLn
km

s� lnm
, (15)

one concludes by considering Eq. (14) that the limit value of the transmissibility function (14) for s going to the
system’s poles, lr, converges to

lim
s!lr

Tk
ijðsÞ ¼ lim

s!lr

ðs� lrÞHikðsÞ

ðs� lrÞHjkðsÞ

¼

lims!lr

PNm

m¼1

ðs� lrÞfimLkm

s� lm

þ
ðs� lrÞf

n

imLn
km

s� lnm

� �

lims!lr

PNm

m¼1

ðs� lrÞfjmLkm

s� lm

þ
ðs� lrÞf

n

jmLn
km

s� lnm

 !

¼

lims!lr

ðs� lrÞfirLkr

s� lr

þ 0

lims!lr

ðs� lrÞfjrLkr

s� lr

þ 0

¼
fir

fjr

(16)

and becomes independent of the location of the input dof k of the (unknown) force.
This fact that the transmissibility function becomes independent of the location of the applied force exactly

at the system poles can now be used to find the system poles that were canceled out in the previous section.
The subtraction of two transmissibility functions with the same output dofs, ði; jÞ, but with different input

dofs, ðk; lÞ, of the applied force satisfies

lim
s!lr

ðTk
ijðsÞ � Tl

ijðsÞÞ ¼
fir

fjr

�
fir

fjr

¼ 0. (17)

This means that the system’s poles, lm, are zeroes of the rational function DTkl
ij ðoÞ9Tk

ijðoÞ � Tl
ijðoÞ, and,

consequently, poles of its inverse, i.e.

D�1Tkl
ij ðsÞ9

1

DTkl
ij ðsÞ
¼

1

Tk
ijðsÞ � Tl

ijðsÞ
. (18)

The above elaborated theoretical results show that it is possible, by using transmissibilities, to obtain a
rational function D�1Tkl

ij ðsÞ, with poles equal to the system’s poles. This is directly the result of the fact that
transmissibilities vary with the location of the applied forces, but become independent of them at the system’s
poles and all converge to the same unique value as shown in Eq. (16).

As such, transmissibility driven stochastic identification algorithms can also be considered as a stochastic
counterpart of the FRF-driven deterministic algorithms. In both cases, spectral functions are used as primary
data. In fact the transmissibility-based identification methods first estimate transmissibility functions between
the responses and a certain reference response under one loading condition. By estimating the same set of
transmissibility functions under a second loading condition and combining them with the transmissibility
functions obtained under the first loading condition one can estimate the D�1Tkl

ij ðsÞ functions.
In the next step the correct system poles, lm, can easily be identified, by identifying the discussed

mathematical models from the estimates of the D�1Tkl
ij ðsÞ functions by performing a parametric estimation, in
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a similar way as for the deterministic FRFs (this will be elaborated in more detail in the next section). In this
way both the damped resonant frequencies and the damping ratios of each mode in the frequency range of
interest can be obtained.
4. Identifying the modal parameters

In previous paragraphs mathematical models to describe the dynamical behavior of the structure and the
different types of primary data were discussed. In this section a brief introduction will be given on how
identification methods can be used to extract the modal parameters starting from these models and the
measured primary data.

Only frequency-domain methods will be considered. These frequency-domain estimators are based on the
minimization of an equation error � between the measured primary data and the mathematical model used
[26]. Considering for example the common-denominator description, this equation error is defined as

�ðof Þ ¼ Hðof Þ �
Bðof ; yÞ
Aðof ; yÞ

. (19)

In this case the primary data consists of FRF measurements where of is the angular frequency (f ¼ 1; . . . ;Nf

with Nf the number of measured frequency lines) and the polynomial coefficients y are the parameters to be
estimated.

The quadratic cost function is then defined as the Frobenius norm of the squared error function for each
angular frequency of , i.e lðyÞ ¼

PNf

f¼1k�ðof Þk
2
F . The most straightforward method to minimize lðyÞ with

respect to the parameters is using a least-squares approach. Based on this idea, a large number of least-squares
estimators have been described in the literature during the last two decades [2,3]. All these estimators are in
essence curve-fitting techniques.

In this contribution the system poles, lm, are identified, by directly applying a frequency-domain estimator
[26,27] to the D�1Tkl

ij functions.
In this case the equation error is defined as

�ðof Þ ¼ D�1Tðof Þ �
Bðof ; yÞ
Aðof ; yÞ

. (20)

From the identified mathematical model both the damped resonant frequencies and the damping ratios of
each mode in the frequency range of interest are obtained.

In the next step it is also possible to obtain unscaled mode shape vectors by curve-fitting the different
transmissibility measurements Tij (for i ¼ 1; . . . ; n with n the number of measured output dof) and evaluate
them at the previously obtained system poles. This can be verified by looking at Eq. (16), since the values of
the transmissibilities at the system poles are directly related to the scalar mode-shape values fim and fjm. By
choosing a fixed reference dof j and giving fjm a normalized value of 1, the full unscaled mode-shape vector
ðf1m;f2m . . . ; 1; . . . ;fnmÞ can be constructed.

Note that the rational function D�1Tkl
ij can be rewritten as

D�1Tkl
ij ðsÞ ¼

1

HikðsÞ

HjkðsÞ
�

HilðsÞ

HjlðsÞ

¼
HjkðsÞHjlðsÞ

HikðsÞHjlðsÞ �HilðsÞHjkðsÞ

¼
BjkðsÞBjlðsÞ

BikðsÞBjlðsÞ � BilðsÞBjkðsÞ
(21)

and so, the order of the polynomial, BikðsÞBjlðsÞ � BilðsÞBjkðsÞ, can exceed the order of the common-

denominator polynomial, AðsÞ. This means that D�1Tkl
ij ðsÞ can contain more poles than the system’s poles

only. Hence, in general, only a subset of the poles of D�1Tkl
ij ðsÞ will correspond to the real system’s poles.
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To select the the correct system poles, a singular value decomposition [28] can, for instance, be used. This
method will be described in detail in Section 5.

In the next section the new output-only procedure will be illustrated by means of a numerical experiment on
a cantilever beam. A comparison will be made between the results of a classic input–output and the new
output-only modal analysis based on transmissibility measurements. Eventually, some considerations and
conclusions will be given in Sections 6 and 7.
5. Simulation results

Consider the steel cantilever beam given in Fig. 3 with dimensions: 1m� 0:01m� 0:01m.
A Finite Element model is created, using the commercially available software Femlab. In Femlab, a default

meshing is applied resulting in 300 elements and the FRFs are calculated, using a direct solver. A total of 4
different experiments are performed, respectively, with a single force applied in the vertical direction in
location 0,1,2 and 3, respectively at the free tip and 0.1, 0.3m and 0.8m from the free tip. The responses are
measured at the same locations 1–3.

Fig. 4 shows the FRFs for a force at location 1. The vertical dashed lines indicate the location of the
resonant peaks of the beam (see Fig. 4).

Next, the transmissibility between the responses 2 and 1, Tk
21 is calculated and compared in Fig. 5 for the 4

different locations, k ¼ 0; . . . ; 3, of the single force. One notices that the amplitude peaks of the
transmissibilities do not correspond with the resonant frequencies. However, all transmissibilities cross each
other at the resonant frequencies of the beam, which is in agreement with the theoretical results of Section 3.

Starting from transmissibility measurements under different loading conditions, several D�1Tkl
ij functions—

defined in Eq. (18)—can be computed. These functions are illustrated in Fig. 6 for different combinations of
the force locations k and l. It can be observed that most of the amplitude peaks coincide with the resonant
peaks of the beam considered.

The correct system poles, lm, can now easily be identified, and compared with those obtained from EMA by
directly applying a frequency-domain estimator to the transmissibility-based D�1Tkl

ij functions as well as to the
FRFs. The primary data are compared to the identified models in Fig. 7 and demonstrate a perfect fit.
Fig. 3. Cantilever beam.
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The identified damping ratios and damped natural frequencies are summarized in Table 1.Both
approaches—frequency response and transmissibility-based—yield identical results. The transmissibility-
based approach results in additional poles that are not related to the system’s dynamics. This is a direct result
of the fact that the order of the D�1Tkl

ij can exceed the order of the common-denominator polynomial, AðsÞ, as
was explained in Section 4. One can also understand this by looking at Fig. 5, where one can see that the
transmissibility functions obtained from 2 different loading conditions k can have more crossings then there
are poles in the frequency band of interest. As such the calculated D�1Tkl

ij can have more peaks than there are
system poles. This can be observed in Fig. 6.

In what follows, a mathematical tool that helps to distinguish the real system poles from the additional ones
will be elaborated. The idea is to consider also a third loading condition and to evaluate more than 2
transmissibility functions at the same time, which is currently the case if only the calculated D�1Tkl

ij functions
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Fig. 7. Comparison between the estimated model (full line) and the measured spectra (dots) of (a) the FRFs and (b) the D�1Tkl

ij functions.

Table 1

Comparison of the estimated damping ratios and damped natural frequencies obtained from the FRF measurements and the

transmissibility-based approach

zðHÞð%Þ zðD�1TÞð%Þ f d ðHÞ (Hz) f d ðD
�1TÞ (Hz)

0.027 0.027 8.602 8.602

0.169 0.169 53.88 53.88

— 0.308 – 98.11

0.474 0.474 150.8 150.8
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are considered. The easiest way to achieve this goal is by considering the following square matrix and to
evaluate its rank.

½TðsÞ� ¼

T1
21ðsÞ T2

21ðsÞ T3
21ðsÞ

1 1 1

1 1 1

2
64

3
75. (22)

The proposed matrix is of rank 2, since it has two equal rows of ones. If only 2 out of the 3 transmissibility
functions are equal the matrix remains of rank 2. If all 3 transmissibility functions are equal the matrix will
become of rank 1. An easy way to evaluate the rank of a matrix is by performing a singular value
decomposition [28]. If a 3� 3 matrix is of rank 3 it has 3 singular values that differ from 0. If the matrix is of
rank 1, only the first singular value will be different from 0.

Considering the fact that all transmissibility functions converge to the same unique values at the system poles
(16), all columns of this matrix will become equal at the system poles. Thus the proposed matrix will be of rank 1
at the system poles, lm. This implies that the second singular value s2ðsÞ should converge to 0 for s ¼ lm.

If the experiment performed allows to measure more transmissibility functions one can extend the previous
matrix to, e.g., Eq. (23), which further reduce the risk of finding additional poles. In this case the condition
necessary for the matrix to become of rank 1 is that 2 times 3 transmissibility functions converge to the same value.

½TðsÞ� ¼

T1
21ðsÞ T2

21ðsÞ T3
21ðsÞ

T1
31ðsÞ T2

31ðsÞ T3
31ðsÞ

1 1 1

2
64

3
75. (23)

This matrix should also be of rank 1 at the system poles, lm, implying that the singular value s2ðsÞ should converge
to 0 for s ¼ lm.
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One can also calculate the matrix (23) in the frequency domain by replacing s with of (f ¼ 1; . . . ;Nf with
Nf the number of measured frequency lines). For a weakly damped system, lm � jom, (as often is the case in
mechanical structures) this matrix should be of rank 1 at the resonant frequencies odm, implying that the
second singular value s2ðof Þ should converge to 0 for of ¼ odm. In Fig. 8, s2ðof Þ is plotted as a function of
frequency. One can see that only 3 peaks coinciding with the resonant frequencies are present.

Once the resonant frequencies are known, it is possible to derive the (operational) mode shapes from the
transmissibilities as was explained in Section 4. Fig. 9 shows the comparison between the modes obtained from
the FRFs as primary data and those obtained using the transmissibility measurements.

6. Some considerations

The example above was elaborated assuming a single input excitation. However, in real operational
conditions we mostly deal with a multiple-input situation. In general an unknown number of simultaneous
sources are exciting the structure, some of which may be distributed.

In this situation the transmissibility reduces to

TijðsÞ ¼
X iðsÞ

X jðsÞ
¼

Pn
k¼1HikðsÞFkðsÞPn
k¼1HjkðsÞFkðsÞ

¼

Pn
k¼1BikðsÞF kðsÞPn
k¼1BjkðsÞF kðsÞ

, (24)

with n the number of forces applied to the structure. Also in this case the common-denominator polynomial,
whose roots are the system poles, disappears. In order to show that the transmissibility OMA procedure
elaborated above can still be used in the presence of multiple inputs, it is sufficient to demonstrate that the
transmissibility functions as defined in Eq. (24) with the same output dofs, ði; jÞ, but with different forces FkðoÞ
still converge to the same unique value at the system poles.

Note that it is no longer possible to eliminate the forces F kðoÞ, and so the transmissibility function (24) not
only depends this time on the location but also on the amplitude of those forces. Nevertheless, in Eq. (25) one
can still verify that the transmissibility functions for different forces (e.g. different locations of the forces,
different number of forces or different amplitudes of the forces) still converge to the same unique value at the
system poles, and therefore the proposed technique is still applicable.

lim
s!lr

T ijðsÞ ¼

Pn
k¼1lims!lr

ðHikðsÞFkðsÞÞPn
k¼1lims!lr

ðHjkðsÞFkðsÞÞ

¼

Pn
k¼1firLkrFkðsÞPn
k¼1fjrLkrFkðsÞ
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Fig. 9. Comparison between unscaled mode shapes from FRFs (dots) and transmissibility measurements (full line).
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¼
fir

fjr

Pn
k¼1LkrF kðsÞPn
k¼1LkrF kðsÞ

¼
fir

fjr

, (25)

This shows the robustness of the method since it demonstrates that the procedure is not harmed by the fact
that we have several forces exciting the structure simultaneously. These forces do not need to be known and
are allowed to be distributed.

In order to use the transmissibility OMA procedure in operational conditions with a multiple inputs or
distributed loads, it is sufficient that the loads change in position, amplitude or number of applied loads. These
different loading conditions can be obtained by, e.g. a change in the ambient forces (e.g. change of wind-level/
wind-direction) or by adding artificial applied forces (e.g. impact hammer) in different locations. One can also
consider a loading condition resulting from both artificial applied forces and unknown ambient excitation.

7. Conclusions

A comparison was made between identification results of a classic input–output modal analysis using FRFs
as primary data and the new proposed output-only technique using transmissibility measurements as primary
data. It has been shown in this paper that the correct system poles can be identified starting from
transmissibility measurements only. Classical output-only techniques often require the operational forces to be
white noise. This is not necessary for the proposed transmissibility-based approach. The unknown operational
forces can be arbitrary (colored noise, swept sine, impact, etc.) as long as they are persistently exciting the
structure in the frequency band of interest. In order to use the proposed method it is necessary that different
loading conditions can be obtained during the experiment.
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